Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Selvanayagam, ${ }^{\text {a }}$
 D. Velmurugan, ${ }^{\text {a }}$
 K. Ravikumar, ${ }^{\text {b }}$
 M. Poornachandran ${ }^{\mathrm{c}}$ and
 R. Raghunathan ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray
Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and
${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.118$
Data-to-parameter ratio $=19.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(p-Bromophenyl)-5-p-tosylperhydropyrrolo-[3,4-b]pyrrole

In the title compound, $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$, the fused pyrrolidine rings adopt envelope conformations. The molecular packing is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions and van der Waals forces.

Comment

Pyrrole derivatives have good in vitro activity against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2003) activities. In view of its medicinal importance, the crystal structure determination of the title compound, (I), was carried out by X-ray diffraction.

(I)

Compound (I) (Fig. 1) consists of fused pyrrolidine rings (A and B), bromophenyl and toluenesulfonyl groups. The H atoms attached to the junction of rings A and B adopt a cis configuration with a torsion angle of -14.4 (3) ${ }^{\circ}$. The dihedral angle between the fused pyrrolidine rings A and B is $63.2(1)^{\circ}$ (i.e the angle between the mean planes through atoms $\mathrm{N} 1 / \mathrm{C} 8 /$ $\mathrm{C} 9 / \mathrm{C} 10$ and $\mathrm{N} 2 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 12$). The $\mathrm{C}-\mathrm{Br}, \mathrm{C}-\mathrm{S}, \mathrm{N}-\mathrm{S}$ and $\mathrm{S}-$

Figure 1
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 10 June 2005
Accepted 6 July 2005
Online 13 July 2005

Figure 2
The molecular packing of (I), showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines).

O bond lengths (Table 1) are comparable to those reported in the literature (Allen et al., 1987).

Atom S1 has a distorted tetrahedral configuration, with the angles $\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1\left[120.2(2)^{\circ}\right]$ and $\mathrm{C} 5-\mathrm{S} 1-\mathrm{N} 1\left[107.4(1)^{\circ}\right]$ deviating significantly from ideal tetrahedral values. Similar distortions in the sulfonyl group were reported and attributed to the repulsive interaction between the short $\mathrm{S}=\mathrm{O}$ bonds (Ravishankar et al., 2003). The sums of the angles at atoms N1 and N 2 of the pyrrolidine rings (346.7 and 354.2°, respectively) are in accordance with $s p^{3}$ hybridization. The torsion angles $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4 \quad\left[-179.7(3)^{\circ}\right] \quad$ and $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$ [179.7 (3) ${ }^{\circ}$] indicate that the methyl group does not deviate significantly from the plane of the attached benzene ring. The bromophenyl group is essentially planar, with a maximum deviation of 0.078 (1) Å for atom Br1. The mean planes of the bromophenyl and methylphenyl groups make a dihedral angle of 38.2 (1) ${ }^{\circ}$.

Pyrroldine rings A and B both adopt envelope conformations, with puckering parameters $q_{2}=0.388$ (3) (ring A) and 0.295 (2) $\AA(\operatorname{ring} B)$, and $\varphi=159.2$ (3) (ring A) and 102.4 (4) (ring B) (Cremer \& Pople, 1975). For ring A, atom C11 deviates by 0.590 (3) \AA from the least-squares plane through the remaining four atoms, whereas for ring B, atom C13 deviates by 0.454 (3) \AA from the corresponding least-squares plane. The molecular packing (Fig. 2) is stabilized by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and van der Waals forces.

Experimental

A solution of N-allyl- N-(2-oxoethyl)-4-methylbenzenesulfonamide (1 mmol) and p-bromobenzylglycine $(1.2 \mathrm{mmol})$ in dry toluene $(20 \mathrm{ml})$ was refluxed for 4 h . After completion of the reaction, the solvent was evaporated under vacuum and the residue was chromatographed using ethyl acetate and hexane mixture (9:1) to yield the title compound. Single crystals suitable for X-ray diffraction were obtained from an ethyl acetate and hexane (1:1) mixture by slow evaporation.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=421.35$
Monoclinic, $P 2_{1} /$ c
$a=17.7114$ (13) \AA
$b=7.8569$ (6) A
$c=14.3048$ (10) \AA
$\beta=110.589$ (1) ${ }^{\circ}$
$V=1863.5$ (2) \AA^{3}
$Z=4$
$D_{x}=1.502 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6484
reflections
$\theta=2.3-22.9^{\circ}$
$\mu=2.33 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.22 \times 0.20 \times 0.18 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: none
20629 measured reflections
4384 independent reflections

$$
\begin{aligned}
& 3239 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.024 \\
& \theta_{\max }=28.0^{\circ} \\
& h=-23 \rightarrow 22 \\
& k=-10 \rightarrow 10 \\
& l=-18 \rightarrow 18 \\
& \\
& \\
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0686 P)^{2}\right. \\
& \quad+0.4426 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.99 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.46 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Refinement

Refinement on F^{2}
$w R\left(F^{2}\right)=0.118$
$S=1.02$
4384 reflections
227 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Br} 1-\mathrm{C} 17$	$1.903(2)$	$\mathrm{S} 1-\mathrm{N} 1$	$1.621(2)$
$\mathrm{S} 1-\mathrm{O} 1$	$1.425(2)$	$\mathrm{S} 1-\mathrm{C} 5$	$1.758(3)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.428(2)$		
			$120.3(1)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$120.2(2)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$	$121.2(2)$
$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 5$	$107.4(1)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 12$	$120.9(2)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 8$	$107.5(2)$	$\mathrm{C} 14-\mathrm{N} 2-\mathrm{C} 9$	$112.1(2)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{S} 1$	$118.9(2)$	$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 9$	
			$179.7(3)$

Table 2
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{2}$	0.93	2.47	$3.206(3)$	137
$\mathrm{C} 10-\mathrm{H} 10 \cdots 1^{\mathrm{i}}$		0.98	2.52	$3.337(3)$

Symmetry codes: (i) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x, y-1, z$.
The H atoms were positioned geometrically and treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $1.2 U_{\text {eq }}(\mathrm{C})$ for the remaining H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV

organic papers

acknowledges the University Grants Commission (UGC) and the Department of Bio-Technology (DBT), India, for providing computing facilities under major Research projects and also thanks the Department for financial support under the UGC-SAP and DST-FIST programs.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.

Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. \& Manetti, F. (2005). Bioorg. Med. Chem. 13, 1221-1230.

Borthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Weingarten, C. G. \& Woolven, J. M. (2003). J. Med. Chem. 46, 4428-4449.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. \& Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2003). Acta Cryst. E59, o1903-o1906.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

