Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Selvanayagam,^a D. Velmurugan,^a* K. Ravikumar,^b M. Poornachandran^c and R. Raghunathan^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 273 K Mean σ (C–C) = 0.004 Å R factor = 0.039 wR factor = 0.118 Data-to-parameter ratio = 19.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(*p*-Bromophenyl)-5-*p*-tosylperhydropyrrolo-[3,4-*b*]pyrrole

In the title compound, $C_{19}H_{21}BrN_2O_2S$, the fused pyrrolidine rings adopt envelope conformations. The molecular packing is stabilized by weak intermolecular $C-H\cdots O$ interactions and van der Waals forces.

Received 10 June 2005 Accepted 6 July 2005 Online 13 July 2005

Comment

Pyrrole derivatives have good *in vitro* activity against mycobacteria and candidae (Biava *et al.*, 2005). These derivatives also possess anti-inflammatory (Fernandes *et al.*, 2004) and antiviral (Borthwick *et al.*, 2003) activities. In view of its medicinal importance, the crystal structure determination of the title compound, (I), was carried out by X-ray diffraction.

Compound (I) (Fig. 1) consists of fused pyrrolidine rings (A and B), bromophenyl and toluenesulfonyl groups. The H atoms attached to the junction of rings A and B adopt a *cis* configuration with a torsion angle of -14.4 (3)°. The dihedral angle between the fused pyrrolidine rings A and B is 63.2 (1)° (*i.e* the angle between the mean planes through atoms N1/C8/C9/C10 and N2/C9/C10/C12). The C–Br, C–S, N–S and S–

Figure 1

The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Printed in Great Britain - all rights reserved

© 2005 International Union of Crystallography

Figure 2

The molecular packing of (I), showing the intermolecular C-H···O hydrogen bonds (dashed lines).

O bond lengths (Table 1) are comparable to those reported in the literature (Allen et al., 1987).

Atom S1 has a distorted tetrahedral configuration, with the angles O2-S1-O1 [120.2 (2)°] and C5-S1-N1 [107.4 (1)°] deviating significantly from ideal tetrahedral values. Similar distortions in the sulfonyl group were reported and attributed to the repulsive interaction between the short S=O bonds (Ravishankar et al., 2003). The sums of the angles at atoms N1 and N2 of the pyrrolidine rings (346.7 and 354.2°, respectively) are in accordance with sp^3 hybridization. The torsion angles C1-C2-C3-C4 [-179.7 (3)°] and C1-C2-C7-C6 $[179.7 (3)^{\circ}]$ indicate that the methyl group does not deviate significantly from the plane of the attached benzene ring. The bromophenyl group is essentially planar, with a maximum deviation of 0.078 (1) Å for atom Br1. The mean planes of the bromophenyl and methylphenyl groups make a dihedral angle of 38.2 (1)°.

Pyrroldine rings A and B both adopt envelope conformations, with puckering parameters $q_2 = 0.388$ (3) (ring A) and 0.295 (2) Å (ring B), and $\varphi = 159.2$ (3) (ring A) and 102.4 (4) (ring B) (Cremer & Pople, 1975). For ring A, atom C11 deviates by 0.590 (3) Å from the least-squares plane through the remaining four atoms, whereas for ring B, atom C13 deviates by 0.454 (3) Å from the corresponding least-squares plane. The molecular packing (Fig. 2) is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds (Table 2) and van der Waals forces.

Experimental

A solution of N-allyl-N-(2-oxoethyl)-4-methylbenzenesulfonamide (1 mmol) and p-bromobenzylglycine (1.2 mmol) in dry toluene (20 ml) was refluxed for 4 h. After completion of the reaction, the solvent was evaporated under vacuum and the residue was chromatographed using ethyl acetate and hexane mixture (9:1) to yield the title compound. Single crystals suitable for X-ray diffraction were obtained from an ethyl acetate and hexane (1:1) mixture by slow evaporation.

Crystal data

$C_{19}H_{21}BrN_2O_2S$	$D_x = 1.502 \text{ Mg m}^{-3}$
$M_r = 421.35$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 6484
a = 17.7114 (13) Å	reflections
b = 7.8569 (6) Å	$\theta = 2.3-22.9^{\circ}$
c = 14.3048 (10) Å	$\mu = 2.33 \text{ mm}^{-1}$
$\beta = 110.589 \ (1)^{\circ}$	T = 273 (2) K
$V = 1863.5 (2) \text{ Å}^3$	Block, colourless
Z = 4	$0.22 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	3239 reflections with $I > 2\sigma(I)$	
diffractometer	$R_{\rm int} = 0.024$	
ω scans	$\theta_{\rm max} = 28.0^{\circ}$	
Absorption correction: none	$h = -23 \rightarrow 22$	
20629 measured reflections	$k = -10 \rightarrow 10$	
4384 independent reflections	$l = -18 \rightarrow 18$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0686P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.039$	+ 0.4426P]
$wR(F^2) = 0.118$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
4384 reflections	$\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$
227 parameters	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Br1-C17	1.903 (2)	\$1-N1	1.621 (2)
81-01	1.425 (2)	\$1-C5	1.758 (3)
S1-O2	1.428 (2)		
O1-S1-O2	120.2 (2)	C8-N1-S1	120.3 (1)
N1-S1-C5	107.4 (1)	C14-N2-C12	121.2 (2)
C11-N1-C8	107.5 (2)	C14-N2-C9	120.9 (2)
C11-N1-S1	118.9 (2)	C12-N2-C9	112.1 (2)
C1-C2-C3-C4	-179.7 (3)	C1-C2-C7-C6	179.7 (3)

Table 2			
Hydrogen-bond	geometry	(Å,	°)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C3-H3···O2 ⁱ	0.93	2.47	3.206 (3)	137
$C10-H10\cdots O1^{ii}$	0.98	2.52	3.337 (3)	140

Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (ii) x, y - 1, z.

The H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93-0.98 Å and $U_{\rm iso} = 1.5 U_{\rm eq}(C)$ for methyl H and $1.2 U_{\rm eq}(C)$ for the remaining H atoms.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SS thanks the Council of Scientific and Industrial Research (CSIR) for providing a Senior Research Fellowship. DV acknowledges the University Grants Commission (UGC) and the Department of Bio-Technology (DBT), India, for providing computing facilities under major Research projects and also thanks the Department for financial support under the UGC–SAP and DST–FIST programs.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.
- Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). *Bioorg. Med. Chem.* **13**, 1221–1230.

- Borthwick, A. D., Davies, D. E., Erti, P. F., Exall, A. M., Haley, T. M., Hart, G. J., Jackson, D. L., Parry, N. R., Patikis, A., Trivedi, N., Weingarten, C. G. & Woolven, J. M. (2003). J. Med. Chem. 46, 4428–4449.
- Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895–1905.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, 01903–01906.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.